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The BclA protein is the immunodominant epitope on the surface of Bacillus anthracis spores; however, its
roles in pathogenesis are unclear. We constructed a BclA deletion mutant (bcl4) of the fully virulent Ames
strain. This derivative retained full virulence in several small-animal models of infection despite the bclA

deletion.

Bacillus anthracis is the causative agent of anthrax (6, 9, 18).
The spore of B. anthracis is the infectious particle for all forms
of the disease, including inhalational anthrax (6, 9, 18). There
is significant support for the concept that spore antigens of B.
anthracis contribute to protective immunity (1, 3, 5-7, 12, 15,
16, 28, 29).

The exosporium, the outermost spore structure, is a loose-
fitting layer that envelops the spore (11). Approximately 20
exosporium-associated protein and glycoprotein species have
been identified from analyses of B. anthracis and Bacillus
cereus (2, 4, 21, 23-27). The exosporium membrane projects
“hair-like” fibers (11), of which the major component is the
BclA glycoprotein (23, 25). Upon identifying the immunodom-
inant BclA protein, Sylvestre et al. observed no appreciable
differences in virulence between the nonencapsulated toxino-
genic Sterne vaccine strain and a bcl4 mutant derivative when
spores were administered to mice subcutaneously (25). To
further characterize the role of the BclA protein in B. anthracis
pathogenicity, the bcl4 gene was deleted by allelic exchange
and replaced with the ) kan-2 fragment (20) from the chro-
mosome of the fully virulent Ames strain of B. anthracis. The
deletion was confirmed by PCR and Western blotting analyses,
and as demonstrated by transmission electron and immunoflu-
orescence microscopy, the Ames bclA mutant did not express
the hair-like fibers projecting from the exosporium membrane
present on wild-type Ames spores (data not shown).

We analyzed differences in the ability of spores of the bcl4
mutant to germinate, as it was previously shown that the
exosporium contains enzymes that may affect spore germina-
tion (14, 21, 23, 27). To monitor both early and later germi-
nation events, we assayed the increase in fluorescence and
decrease in absorbance of spores with times of incubation in
media that induce germination (19, 30). We found no signifi-
cant difference (P > 0.05) in germination between the strains
by either assay (Fig. 1A and B).
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FIG. 1. Effect of the BclA protein on the germination rates of B.
anthracis spores in vitro. (A) Microtiter spectrofluorometric assay of
germination of spores in the presence of a germination medium with
alanine, adenosine, and Casamino Acids (AAC), as described previ-
ously (30). The germination of spores of the wild-type Ames strain (O)
and bclA strain (A) was monitored every minute for 1 h. The data
(percent increase in relative fluorescence units [RFU]) are the relative
increase in RFU at a given time point compared to the RFU at time
zero, multiplied by 100. Representative data are presented, and similar
results were obtained in at least two additional experiments. (B) Ger-
mination was also measured by absorbance readings as previously
described (19). The A4, of each sample was measured at various times
and is plotted as the percentage of the initial A, [Agg (init)] at time
zero that is represented by the A, at a given time point [Agy (t)]-
Absorbance data are from three independent experiments, and stan-
dard errors of the means are depicted.
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FIG. 2. Effect of the BclA protein on virulence in the guinea pig
infection model. (A) Female Hartley guinea pigs were challenged i.m.
with spores of the Ames wild-type strain (O) or spores of the bclA
strain (A). (B) The effect of the bcl4 mutation on in vivo fitness in a
competitive guinea pig infection model. Guinea pigs were coinfected
i.m. with spores of both the Ames wild-type strain and the bclA strain.
The error bars represent standard errors of the means. Wt, wild type.

We examined the potential role of the BclA protein in
pathogenesis using guinea pig intramuscular (i.m.) (13) and
mouse intranasal (i.n.) (17) infection models. Guinea pigs were
challenged i.m. with either approximately 980 spores of wild-
type Ames or 860 spores of the bcl4 mutant. All guinea pigs
succumbed to the infection by the second day after challenge
(Fig. 2A). We also employed a more sensitive assay that uti-
lizes in vivo competition in the guinea pig model. Guinea pigs
were coinfected i.m. with approximately 1,000 spores. The
spores delivered i.m. were an approximately equal mixture of
wild-type Ames (57%) and bclA mutant (43%) spores. Two
days later, moribund animals were euthanized and their
spleens were harvested. Levels of bacterial load were deter-
mined within the spleens. Wild-type Ames and bclA bacteria
were recovered from the spleen as measured by bacterial
counts from Luria-Bertani (LB) agar plates (total number of
bacteria) or LB agar plates containing kanamycin (number of
bclA mutant bacteria only). Nearly identical relative percent
recoveries were obtained when the recovered percent of
splenic bacterial CFU was divided by the percent of spores in
the challenge inoculum, suggesting that spores from both
strains germinated, survived, and replicated at the same rate in
vivo (Fig. 2B).

We also used a mouse model of i.n. infection in an attempt
to identify differences in virulence associated with the bclA
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FIG. 3. Effect of the BclA protein on virulence in the mouse infec-
tion model. (A) BALB/c mice were challenged intranasally with spores
of the Ames wild-type strain (O) or the bclA strain (A). (B) The effect
of the bclA mutation on the rate of spore clearance from mouse lungs.
Mice were exposed to an aerosolized inoculum of spores of both
wild-type Ames and bclA mutant. The number of heat-resistant (65°C
for 30 min) spores retained within the lungs at designated time points
was determined by bacterial counts on selective and nonselective me-
dia. The error bars represent standard errors of the means. *, P = 0.03;
*%, P = 0.0005.

mutation. BALB/c mice were challenged i.n. with either 9.25 X
10° spores of the Ames wild-type strain or 7.85 X 10° spores of
the bclA mutant. There were no statistically significant differ-
ences observed in either survival rate or mean time to death
between the two strains (Fig. 3A).

To further resolve the role of BclA in virulence, we devel-
oped a second in vivo competition assay to examine the rate of
clearance of spores from the lungs of mice infected with aero-
solized spores. Mice were exposed to an aerosol containing
approximately equal concentrations of both the wild-type
Ames (48%) and the bclA mutant (52%) spores; a calculated
total inhaled dose of 4 X 10° spores was delivered (8). Mice
were euthanized at various times postinfection, and bronchoal-
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TABLE 1. Comparative rates of retention of the wild-type Ames
and bclA mutant spores in the lungs of mice exposed to aerosol

% Retention of strain”:

Day
Ames bclA
0 100 100
1 38.5 £ 4.1 474 £ 85
2 10.0 = 1.0 142 +23
3 48 £2.5 8.8 £3.2
4 4.6 0.9 121+14

“ Mean percent retention in BAL fluids (*standard errors of the means) was
calculated as the percentage of the initial recovery at time zero.

veolar lavages (BAL) were performed. BAL fluid samples
(both heated and unheated aliquots) were plated on LB agar
plates or LB agar plates containing kanamycin. There were no
differences noted between the results obtained from the heated
(CFU counts representing heat-resistant ungerminated spores)
(Fig. 3B) and unheated BAL fluid (data not shown), confirm-
ing that spore germination is negligible within the lungs them-
selves (8, 11a). Overall, these data suggested that both the
wild-type Ames and the bcl4A mutant spores were cleared from
the mouse lungs at similar rates (Fig. 3B; Table 1). However,
on day 2 and day 4 there were statistically significant differ-
ences between the amounts of wild-type Ames and bcl4 mu-
tant spores recovered from the BAL fluid (Fig. 3B). The im-
plications of these findings for pathogenesis are unclear, as
there were no significant differences observed at any other time
point and the bcl4 mutant appeared to be of virulence equal to
that of wild-type Ames by the pulmonary route (Fig. 3 and data
not shown). However, these data suggest that the bcl4 mutant
spores might be cleared slightly less efficiently from the lungs
than wild-type spores, possibly because the mutant spores were
able to bind better to host cells, such as the epithelial cells
lining the lung and/or airway.

The exact roles of the BclA protein and the exosporium of B.
anthracis in pathogenesis of and host protection against an-
thrax still remain to be determined. Several other species of
Bacillus also possess an exosporium structure; however, except
for B. cereus, these bacteria are not normally pathogens of
mammals and are common environmental saprophytes. It was
recently shown that spores of B. anthracis are able to germinate
on and around roots of plants in a grass plant-soil model
system (22). Perhaps the entire exosporium or the exosporial
fibers are required for the interaction between spores and
roots of the plants or serve in some other role for survival in
the environment.

Studies such as the one reported here should contribute in
several ways to the identification of novel vaccine candidates as
well as targets for detector systems. First, a better understand-
ing of how the immune response recognizes B. anthracis spores
is necessary, particularly in relation to immunodominant anti-
gens, such as BclA. More importantly, it is vital to characterize
the roles of candidate spore antigens in bacterial pathogenesis
and the role of the immune response in protective immunity.
Our studies with a bcl4 mutant of the Ames strain revealed
that BclA was not required for the pathogenesis of fully viru-
lent B. anthracis in two animal species by different challenge
methods. While BclA is immunodominant and accordingly an
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attractive target for detection technologies, this protein could
easily be removed from a B. anthracis variant engineered to
evade detection systems, and yet these altered spores would
retain full virulence.
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